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1. The problem

We analyze a model tracking problem for a 1D scalar conservation law. It consists in optimizing
the initial datum so to minimize a weighted distance to a given target during a given finite time
horizon. To be more precise, given a finite time T > 0, a target function ud ∈ L2(R× (0, T )), and
a positive weight function ρ ∈ L∞(R × (0, T )) with compact support in R × (0, T ), we consider
the functional cost to be minimized J , over a suitable class of initial data Uad, defined by

J(u0) =
1

2

∫ T

0

∫
R
ρ(x, t)|u(x, t)− ud(x, t)|2dxdt, (1.1)

where u : Rx × Rt → R is the unique entropy solution of the scalar conservation law

∂tu+ ∂x(f(u)) = 0, in R× (0, T ); u(x, 0) = u0(x), x ∈ R. (1.2)

Thus, the problem under consideration reads: To find u0,min ∈ Uad such that

J(u0,min) = min
u0∈Uab

J(u0). (1.3)

Here the flux f : R → R is assumed to be smooth: f ∈ C1(R,R). The initial datum u0 will be
assumed to belong to a suitable admissible class Uad to ensure the existence of a minimizer.

1.1. Sensitivity of the state in the presence of shocks. Inspired in several results on the
sensitivity of solutions of conservation laws in the presence of shocks in one-dimension (see [7, 4,
5, 6, 17, 13]), we focus on the particular case of solutions having a single shock. But the analysis
can be extended to consider more general one-dimensional systems of conservation laws with a
finite number of noninteracting shocks. We introduce the following hypothesis:

Hypothesis 1.1. Assume that u(x, t) is a weak entropy solution of (1.2) with a discontinuity
along a regular curve Σ = {(ϕ(t), t), t ∈ (0, T )}, which is Lipschitz continuous outside Σ. In
particular, it satisfies the Rankine-Hugoniot condition on Σ

ϕ′(t)[u]Σt = [f(u)]Σt .

Here we have used the notation: [v]Σt = lim
ε↘0

v(ϕ(t) + ε, t) − v(ϕ(t) − ε, t), for the jump at Σt =

(ϕ(t), t) of any piecewise continuous function v with a discontinuity at Σt.
1
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Note that Σ divides R× (0, T ) into two parts: Q− and Q+ , the sub-domains of R× (0, T ) to
the left and to the right of Σ respectively.

As we will see, in the presence of shocks, to deal correctly with optimal control and design
problems, the state of the system needs to be viewed as constituted by the pair (u, ϕ) combining
the solution of (1.2) and the shock location ϕ. This is relevant in the analysis of sensitivity of
functions below and when applying descent algorithms.

We adopt the functional framework based on the generalized tangent vectors (see [7] and Defi-
nition 4.1 in [8]).

Let u0 be the initial datum, that we assume to be Lipschitz continuous to both sides of a single
discontinuity located at x = ϕ0, and consider a generalized tangent vector (δu0, δϕ0) ∈ L1(R)×R
for all 0 ≤ T . Let u0,ε be a path which generates (δu0, δϕ0). For ε sufficiently small, the solution
uε(·, t) of (1.2) is Lipschitz continuous with a single discontinuity at x = ϕε(t), for all t ∈ [0, T ].
Therefore, uε(·, t) generates a generalized tangent vector (δu(·, t), δϕ(t)) ∈ L1(R)× R. Moreover,
in [8] it is proved that it satisfies the following linearized system:

∂tδu+ ∂x(f ′(u)δu) = 0, in Q− ∪Q+ (1.4)

d

dt
([u]Σtδϕ) = [f ′(u)δu]Σt − [δu]Σt

d

dt
ϕ, t ∈ (0, T ) (1.5)

δu(x, 0) = δu0(x), {x < ϕ0} ∪ {x > ϕ0} (1.6)

δϕ(0) = δϕ0. (1.7)

1.2. Sensitivity of the cost in the presence of shocks. In this section we study the sensitivity
of the functional J with respect to variations associated with the generalized tangent vectors
defined in the previous section. We first define an appropriate generalization of the Gateaux
derivative of J .

Definition 1.2. Let J : L1(R)→ R be a functional and u0 ∈ L1(R) be Lipschitz continuous with a
discontinuity in Σ0, an initial datum for which the solution of (1.2) satisfies hypothesis (1.1). J is
Gateaux differentiable at u0 in a generalized sense if for any generalized tangent vector (δu0, δϕ0)
and any family u0,ε associated to (δu0, δϕ0) the following limit exists,

δJ = lim
ε→0

J(u0,ε)− J(u0)

ε
,

and it depends only on (u0, ϕ0) and (δu0, δϕ0), i.e. it does not depend on the particular family u0,ε

which generates (δu0, δϕ0). The limit is the generalized Gateux derivative of J in the direction
(δu0, δϕ0).

The following result easily provides a characterization of the generalized Gateaux derivative of
J in terms of the solution of the associated adjoint system (1.9), (1.10),(1.11), (1.12), (1.13) and
(1.14).

Proposition 1.3. The Gateaux derivative of J can be written as follows

δJ(u0)[δu0, δϕ0] =

∫
R
p(x, 0)δu0(x)dx− q(0)[u]Σ0δϕ0, (1.8)

where the adjoint state pair (p, q) satisfies the system

−∂tp− f ′(u)∂xp = ρ (u− ud), in Q− ∪Q+ (1.9)

[p]Σt = 0, t ∈ (0, T ) (1.10)

q(t) = p(ϕ(t), t), t ∈ (0, T ) (1.11)

− d

dt
q =

(1 + (ϕ̇)2)1/2[ρ (u− ud)2]Σt

2[u]Σt

, t ∈ (0, T ) (1.12)

p(x, T ) = 0, {x < ϕ(T )} ∪ {x > ϕ(T )} (1.13)

q(T ) = 0. (1.14)
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Let us briefly comment the result of Proposition 1.3 before giving its proof.
System (1.9)-(1.14) has a unique solution. In fact, to solve the backward system (1.9)-(1.14)

we first define the solution q on the shock Σ from the conditions for q (1.12) and (1.14). This
determines the value of p along the shock. We then propagate this information, together with
(1.9) and (1.13), to both sides of Σ, by characteristics (see Figure 1 where we illustrate this
construction).

p is defined by the method of characteristics

p on the region of influence of the characteristics emanating from the shock

X− X+t = 0

t = T

Σ

Σ0

Figure 1. Characteristic lines entering on a shock and how they may be used
to build the solution of the adjoint system both away from the shock and on its
region of influence.

Formula (1.8) provides an obvious way to compute a first descent direction of J at u0. We just
take

(δu0, δϕ0) = (−p(·, 0), q(0)[u]Σ0). (1.15)

Here, the value of δϕ0 must be interpreted as the optimal infinitesimal displacement of the dis-
continuity of u0.

In [8], when considering the inverse design problem, it was observed that the solution p of the
corresponding adjoint system at t = 0 was discontinuous, with two discontinuities, one in each
side of the original location of the discontinuity at Σ0. This was a reason not to use this descent
direction and for introducing the alternating descent method. In the present setting, however, the
adjoint state p obtained is typically continuous. This is due to the fact that p at both side of the
discontinuity is defined by the method of characteristics and that, on the region of influence of
the characteristics emanating from the shock, the continuity is preserved by the fact that, on one
hand, q = q(t) itself is continuous as the primitive of an integrable function and that the data for
p and q at t = T are continuous too. Despite of this, as we shall see, the implementation of the
alternating descent direction method is worth since it significantly improves the results obtained
by the purely discrete approach.

2. Numerical experiments

In this section we present some numerical experiments which illustrate the results obtained in
an optimization model problem with each one of the numerical methods described in the previous
section.

We have chosen as computational domain the interval (−4, 4) and we have taken as boundary
conditions in the numerical scheme, at each time step t = tn, the value of the initial data at the
boundary. This can be justified if we assume that the initial datum u0 is constant in a sufficiently
large inner neighborhood of the boundary x = ±4 (which depends on the size of the L∞-norm of
the data under consideration and the time horizon T ), due to the finite speed of propagation. A
similar procedure is employed for the adjoint equation.
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We underline once more that the solutions obtained with each method may correspond to global
minima or local ones since the gradient algorithm does not distinguish them.

In the experiments we consider the Burgers’ equation, i.e. f(z) = z2/2,

∂tu+ ∂x

(
u2

2

)
= 0, u(x, 0) = u0(x). (2.1)

The weight function ρ, under consideration in the experiments is given by

ρ(x, t) =

{
1 t ∈ (T/2, T )
0 otherwise.

And the time horizon T = 1.
To compare the efficiency of the different methods we consider a fixed ∆x = 1/20, λ = ∆t/∆x =

2/3 (which satisfies the CFL condition). We then analyze the number of iterations that each
method needs to attain a prescribed value of the functional.

2.1. Experiment 1. We first consider a piecewise constant target profile ud given by the solution
of (2.1) with the initial condition (ud)0 given by

(ud)0(x) =

{
0.7 x ∈ [−2, 1]
0 otherwise.

(2.2)

Note that, in this case, (2.2) yields a particular solution of the optimization problem and the
minimum value of J vanishes.

We solve the optimization problem (1.3) with the above described different methods starting
from the following initialization for u0:

u0(x) =

{
0.5 x ≤ 0
−0.1 x > 0,

(2.3)

which also has a discontinuity but located on a different point.
In Figure 2 we plot log(J) with respect to the number of iterations, for both, the purely discrete

method and the alternating descent one. We see that the latter stabilizes in fewer iterations.

Figure 2. Experiment 1. log(J) versus the number of iterations in the descent
algorithm for the discrete and the alternating descent methods.

In Figures 3 and 4, we present the minimizers obtained by the methods above, and the associated
solutions, Figures 5 and 6.

The initial datum u0 obtained by the alternating descent method (Figures 4) is a good approx-
imation of (2.2). The solution given by the discrete approach (Figures 3) presents added spurious
oscillations. Furthermore, the discrete method is much slower and does not achieve the same level
of accuracy since the functional J∆ does not decrease so much.
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Figure 3. Experiment 1: u0,
discrete method, iteration k =

999

Figure 4. Experiment 1: u0, al-
ternating descent method, itera-
tion k = 38

Figure 5. Experiment 1: Solu-
tion u(x, t), discrete method, iter-
ation k = 999

Figure 6. Experiment 1: So-
lution u(x, t), alternating descent
method, iteration k = 38

2.2. Experiment 2. The previous experiment indicates that the alternating descent method
performs significantly better. In order to show that this is a systematic fact, which arises inde-
pendently of the initialization of the method, we consider the target ud given by the solution of
(2.1) with the initial condition (ud)0 given by

(ud)0(x) =

{
0.5 x ≤ 0.5
0 otherwise,

(2.4)

but this time we compare the performance of both methods starting from different initializations.
The obtained numerical results are presented in Figure 7.
We see that, regardless the initialization considered, the alternating descent method performs

significantly better.
We observe that in the five experiments the alternating descent method perfumes better ensur-

ing the descent of the functional in much fewer iterations and yielding smoother, less oscillatory
approximation of the minimizer.

Note also that the discrete method, rather than yielding discontinuous approximations of the
minimizer as the alternating descent method does, it produces an initial datum with a Lipschitz
front. Observe that these are two different configurations that can lead to the same evolution
for the Burgers equation after some time, once the front develops the discontinuity. This is in
agreement with the fact that the functional to be minimized is only active in the time-interval
T/2 ≤ t ≤ T .
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u0 obtained by the discrete

approach

u0 obtained by the alternating

descent method

The value of the functional

Figure 7. Experiment 2. We present a comparison of the results obtained with
both methods starting out of five different initialization configurations. In the left
column we exhibit the results obtained with the discrete method. In the second
one those achieved by the alternating descent method. In the last one we plot the
evolution of the functional with both methods.
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